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Abstract
Background The effects on bone mineral density (BMD)/fracture between type 1 (T1D) and type 2 (T2D) diabetes 
are unknown. Therefore, we aimed to investigate the causal relationship between the two types of diabetes and BMD/
fracture using a Mendelian randomization (MR) design.

Methods A two-sample MR study was conducted to examine the causal relationship between diabetes and BMD/
fracture, with three phenotypes (T1D, T2D, and glycosylated hemoglobin [HbA1c]) of diabetes as exposures and five 
phenotypes (femoral neck BMD [FN-BMD], lumbar spine BMD [LS-BMD], heel-BMD, total body BMD [TB-BMD], and 
fracture) as outcomes, combining MR-Egger, weighted median, simple mode, and inverse variance weighted (IVW) 
sensitivity assessments. Additionally, horizontal pleiotropy was evaluated and corrected using the residual sum and 
outlier approaches.

Results The IVW method showed that genetically predicted T1D was negatively associated with TB-BMD (β = -0.018, 
95% CI: -0.030, -0.006), while T2D was positively associated with FN-BMD (β = 0.033, 95% CI: 0.003, 0.062), heel-BMD 
(β = 0.018, 95% CI: 0.006, 0.031), and TB-BMD (β = 0.050, 95% CI: 0.022, 0.079). Further, HbA1c was not associated with 
the five outcomes (β ranged from − 0.012 to 0.075).

Conclusions Our results showed that T1D and T2D have different effects on BMD at the genetic level. BMD 
decreased in patients with T1D and increased in those with T2D. These findings highlight the complex interplay 
between diabetes and bone health, suggesting potential age-specific effects and genetic influences. To better 
understand the mechanisms of bone metabolism in patients with diabetes, further longitudinal studies are required 
to explain BMD changes in different types of diabetes.
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Background
Diabetes mellitus, a prevalent noncommunicable chronic 
disease [International Diabetes Federation (IDF), Avail-
able at: http://www.diabetesatlas.org], poses a global 
public health challenge and is associated with severe 
disability and mortality [1]. In 2019, its worldwide prev-
alence was approximately 9.3%, rising to 9.6% in the 
Western Pacific, and is projected to affect 693  million 
individuals by 2045, a 50% increase from 2017 [2]. The 
two main forms of diabetes are type 1 (T1D) and type 2 
(T2D). T1D is caused by the immune system’s elimina-
tion of pancreatic beta cells [3], which results in a dra-
matic decrease in blood insulin levels. Contrarily, T2D is 
more prevalent among adults and older adults and con-
stitutes roughly 90% of all cases of diabetes [4]. Morbidity 
and mortality in diabetes mainly stem from complica-
tions of the macrovascular (cardiovascular disease) and 
microvascular (diabetic kidney disease), retinopathy, and 
neuropathy systems [5].

Osteoporosis (OP) is characterized by low bone mass 
and altered bone architecture, leading to compromised 
bone strength and an increased risk of fracture [6]. Often 
termed a “silent disease,” OP frequently manifests no 
signs until the occurrence of the first fracture [7]. Clini-
cally, OP is diagnosed by measuring bone mineral den-
sity (BMD), with a T score of -2.5 as the cutoff [8], which 
remains the strongest predictor of fracture risk. Globally, 
an osteoporotic fracture occurs every 3  s, resulting in 
over 8.9 million fractures annually [9]. The disease inflicts 
considerable emotional, physical, and financial burden on 
patients, often leading to disability, diminished quality 
of life, and mortality [10]. Furthermore, the prevalence 
of both diabetes and OP is on the rise due to population 
aging and increased life expectancy among patients with 
diabetes [11].

Over 60 years ago, Albright and Reifenstein proposed a 
potential link between diabetes mellitus and OP, suggest-
ing that diabetes might contribute to bone mass loss lead-
ing to OP [12]. This topic has since garnered significant 
attention and investigation [13]. A 2019 observational 
study involving 9238 adults with diabetes and 99,980 
individuals without diabetes found a significant associa-
tion between diabetes and OP (1.2 [1.1–1.4], P = 0.010) 
[14]. Specifically, diabetes was linked to a decreased 
BMD, elevating the risk of bone fracture [15]. While most 
studies suggest a modest reduction in BMD associated 
with diabetes [16], some do not confirm this finding [17]. 
Recent cohort studies have indicated a 4–12-fold increase 
in the risk of hip fracture among individuals with diabe-
tes [18, 19], contrasting earlier case-control investiga-
tions that found no elevated risk [20, 21].

To evaluate potential causal links, Mendelian random-
ization (MR) offers a valuable alternative method [22]. It 
aims to reduce confounding effects and prevent reverse 

causation bias since genotypes are independent of post-
natal lifestyle and environmental variables and precede 
the onset of disease [23]. To investigate the quantita-
tive impact of diabetes (both T1D and T2D) and associ-
ated glycemic characteristics (glycosylated hemoglobin 
[HbA1c]) on various aspects of bone health, including 
femoral neck BMD (FN-BMD), lumbar spine BMD (LS-
BMD), total body BMD (TB-BMD), and fracture, we 
conducted an analysis using MR and genome-wide asso-
ciation study (GWAS) data analysis.

Methods
Study design and data sources
In 2021, the American Diabetes Association released the 
following new diagnostic criteria for diabetes [24]: (1) 
fasting plasma glucose level ≥ 126  mg/dL (7.0 mmol/L), 
(2) 2-h plasma glucose level ≥ 200 mg/dL (11.1 mmol/L) 
during Diabetes Control and Complications Trial 
(OGTT), (3) HbA1c level ≥ 6.5% (48 mmol/mol), and (4) 
random plasma glucose level ≥ 200 mg/dL (11.1 mmol/L). 
Compared to T2D, T1D typically presents at a younger 
age at diagnosis (< 35 years) with a lower body mass 
index (BMI, < 25 kg/m2) and is characterized by positivity 
for insulin-related antibodies [25]. This study employs a 
two-sample MR design adhering to STROBE-MR guide-
lines [26] (Figs. 1 and 2). Utilizing publicly available sum-
mary statistics from GWAS consortia, MR leverages 
genetic variants associated with the exposures of interest 
to examine their associations with disease outcomes. As 
genetic predisposition to a trait is not affected by poten-
tial confounders, this approach is considered to be less 
prone to confounding compared to traditional observa-
tional analyses.

Selection of instrumental variables
Using this strategy, we examined GWAS data from the 
largest investigations of the genetic causes of T1D that 
are currently available (N = 15,573 cases and N = 158,408 
controls) [27], T2D (N = 265,678 cases) [28], and HbA1c 
(N = 46,368 cases) [29]. Three types of genetic suscep-
tibility to diabetes were adjusted for age, sex, weight, 
and height. Five phenotypes (FN-BMD, LS-BMD, heel-
BMD, TB-BMD, and fracture) were used as outcomes. 
Table 1 presents additional details of the exposures and 
outcomes.

For MR estimates, instrumental variables (IVs) were 
derived from summary-level GWAS data. Genetic 
variations linked to diabetes were identified as instru-
mental single nucleotide polymorphisms (SNPs). From 
our analyses (Table 1), we selected a set of independent 
genome-wide significant genetic variants for T1D, T2D, 
and HbA1c as IVs (P < 5 × 10− 8). We used linkage disequi-
librium (LD) [33] clustering with a threshold of r2 > 0.001 
and excluded variations within a 1  Mb distance from 

http://www.diabetesatlas.org
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other SNPs with stronger connections to ensure inde-
pendence among instrumental SNPs for each exposure. 
Additionally, we standardized the effects of these instru-
mental SNPs whenever feasible and excluded those not 
present in the GWAS of the outcomes to ensure align-
ment of all associated risk factors and resulting alleles on 
the same strand. Ultimately, we selected SNPs associated 
with each exposure (T1D = 47, T2D = 57 and HbA1c = 10).

Associations with outcomes
Clinically, OP is defined by measuring BMD with a T 
score below − 2.5, which remains the single best predictor 
of fractures [34]. In this research, BMD and fracture data 
were used to characterize OP phenotypes at various ana-
tomical sites, including FN (n = 32,735), LS (n = 28,498), 
systemic TB (n = 66,628), heel (n = 426,824), and fracture 
(n = 416,795). Data from the Genetic Factors for Osteo-
porosis meta-analysis of FN-BMD and LS-BMD in the 
European population (32,735 and 28,498 individuals, 
respectively, in 2012) were included [35]. Additionally, 
summary statistics from a GWAS meta-analysis involv-
ing 66,628 European participants were included for TB-
BMD [31]. The UK Biobank conducted a comprehensive 
study on the genetic influences on human heel-BMD and 
fracture risk, encompassing 426,824 and 416,795 indi-
viduals for the GWAS dataset for heel-BMD and fracture 
[32], respectively. Further, BMD phenotypes (per stan-
dard deviation) were adjusted for age, sex, weight, and 
height in the previous GWAS studies.

MR analysis
The causal relationship between each exposure and out-
come was assessed using the inverse variance weighted 
(IVW) approach with a fixed-effect model. We excluded 
IVs that were substantially linked with outcome. The 
IVW approach is often considered the most reliable indi-
cator in MR analysis when evidence of directional plei-
otropy is absent (P for MR-Egger intercept > 0.05). When 
each genetic variation meets the IV hypothesis, the IVW 
method can yield a consistent estimate of the exposure’s 
causal effect on the outcome. Cochran’s Q statistics were 
employed to evaluate the IV heterogeneity.

To further validate MR estimates, we used the MR-Plei-
otropy Residual Sum and Outlier (MR-PRESSO) tech-
niques, which identify and remove potential pleiotropic 
IVs, providing outlier-adjusted estimates for IVW analy-
sis (P < 0.05). Additionally, we employed complementary 
analysis methods including weighted median, MR-Egger, 
simple mode, and weighted mode, using random-effect 
model estimation to test the robustness of the IVW 
method. The weighted median estimate, utilizing aggre-
gate data, offers protection against ineffective instru-
ments and provides reliable estimates of causation if at 
least 50% of the weight originates from IVs [36].

Sensitivity analysis
In addition to employing the MR-PRESSO technique to 
identify and eliminate potential pleiotropic IVs and offer 
outlier-adjusted estimates to the IVs for IVW analysis 
(P < 0.05), we used the Single Nucleotide Polymorphisms 

Fig. 1 Illustration of the two-sample Mendelian randomization analysis. T1D: type 1 diabetes; T2D: type 2 diabetes; HbA1c: glycosylated hemoglobin; FN: 
femoral neck; LS: lumbar spine; TB: total body
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Fig. 2 Flowchart of a Mendelian randomization research. GWAS: Genome wide association study; SNPs: Single-nucleotide polymorphisms

 



Page 5 of 11Qu et al. BMC Musculoskeletal Disorders          (2024) 25:317 

Annotator tool (https://snipa.helmholtz-muenchen.de/
snipa3/) to analyze the pleiotropy of potential confound-
ers [37]. Cochran’s Q statistics were utilized to evaluate 
the IV heterogeneity, and loci displaying considerable 
heterogeneity were eliminated to further confirm the reli-
ability of our MR estimations. Furthermore, we employed 
weighted median, weighted mode, simple mode, and 
MR-Egger as complementary analysis methods to assess 
the robustness of the IVW method using random-effect 
model estimation.

Subgroup analysis of age
Considering the potential impact of using summary 
data from GWAS analyses across all age groups on 
the accuracy of MR analyses, we performed a more 
detailed analysis by age groups for TB-BMD. Further, 
TB-BMD data were stratified into five age stages: 0–15 
years (N = 11,807), 15–30 years (N = 4180), 30–45 years 
(N = 10,062), 45–60 years (N = 18,805), and over 60 years 
(N = 22,504). The MR analysis method was employed to 
estimate the correlation between diabetes and TB-BMD 
at each respective age stage.

Results
MR analysis of the effects of diabetes on BMD/fracture
In our initial investigation, we assessed the causal asso-
ciations between diabetes and BMD/fracture utilizing 
a two-sample MR approach. We identified 47 IVs for 
T1D, 57 for T2D, and 10 for HbA1c, all of which reached 
genome-wide significance (P < 5 × 10− 8) in GWAS analy-
ses after removing some missing data. These IVs were 
selected based on their independence from LD effects 
(r2 < 0.001). Heterogeneity tests revealed no signifi-
cant heterogeneity among the selected IVs (Q-P > 0.05, 

Supplementary Tables S1-S3 in Additional file 1), dem-
onstrating that neither horizontal pleiotropy nor het-
erogeneity influenced our MR results. Additionally, 
supplementary Tables S6-S8 in Additional file 1 provide 
details on the power of selected IVs.

The IVW method showed that genetically predicted 
T1D was negatively associated with TB-BMD (β = -0.018, 
95% CI: -0.030, -0.006) (Fig.  3(a)). Consistent findings 
were observed with causal estimates from MR-Egger, 
weighted median, and weighted mode for T1D’s effect 
on TB-BMD. Although T1D displayed heterogeneity for 
TB-BMD (Cochran’s Q-P < 0.05), the heterogeneity was 
reduced after processing using the random effect model 
(IVW, P > 0.05). The MR-PRESSO test showed no hori-
zontal pleiotropic effect (P > 0.05). Interestingly, geneti-
cally predicted T1D was not associated with FN-BMD 
(β = 0.007, 95% CI: -0.008, 0.021), LS-BMD (β = 0.010, 95% 
CI: -0.006, 0.026), heel-BMD (β = 0.002, 95% CI: -0.004, 
0.007), or fracture (β = -0.001, 95% CI: -0.012, 0.010) 
(Supplementary Table S1 in Additional file 1).

The IVW method showed that genetically predicted 
T2D was positively associated with FN-BMD (β = 0.033, 
95% CI: 0.003, 0.062), heel-BMD (β = 0.018, 95% CI: 0.006, 
0.031), and TB-BMD (β = 0.050, 95% CI: 0.022, 0.079) but 
not with LS-BMD (β = 0.035, 95% CI: -0.008, 0.077) or 
fracture (β = -0.004, 95% CI: -0.034, 0.026) (Fig. 3(b)). The 
causative effect of T2D on heel-BMD was disclosed by 
causal estimates from MR-Egger and weighted median, 
and the causal effect of T2D on TB-BMD was also indi-
cated by causal estimates from weighted median and 
weighted mode. The heterogeneity (Cochran’s Q-P < 0.05) 
of T2D on heel-BMD and TB-BMD existed and was 
persistent after processing using the random effect 
model (IVW P < 0.05). The MR-PRESSO test showed no 
horizontal pleiotropic effect (P > 0.05). Weighted mode 
showed potential causal association between T2D and 
FN-BMD (β = 0.053, 95% CI: 0.005, 0.100). However, no 
causal relationship between T2D and FN-BMD, LS-
BMD, TB-BMD, or fracture was observed by MR-Egger 
(Supplementary Table S2 in Additional file 1).

The IVW method showed that genetically predicted 
HbA1c was not associated with the five outcomes (β 
ranged from − 0.012 to 0.075) (Fig. 3(c)). The causal esti-
mates from MR-Egger, weighted median, simple mode, 
and weighted mode were highly similar (β ranged from 
− 0.183 to 0.075) (Supplementary Table S3 in Additional 
file 1). Although HbA1c displayed heterogeneity for heel-
BMD (Cochran’s Q-P < 0.05), the heterogeneity reduced 
after processing using the random effect model (IVW, 
P > 0.05). The MR-PRESSO test showed no horizontal 
pleiotropic effect (P > 0.05).

Table 1 Summary of two-sample Mendelian randomization 
analyses
Exposure Outcome
Diabetes Source BMD/fracture Source
T1D Summary-level for 

T1D [27],
N = 5913 cases di-
agnosed before the 
age of 17 years and 
N = 8828 controls

FN-BMD and 
LS-BMD

Summary-level 
FN-BMD
and LS-BMD [30],
FN (N = 32,735), 
LS (N = 28,498)

TB-BMD Summary-level 
for TB-BMD [31],
(N = 66,628)

T2D Summary-level for 
T2D [28],
N = 265,678 cases

Heel-BMD and 
Fracture

Summary-level 
heel-BMD [32],
(N = 426,824)
Summary-level 
fracture [32],
(N = 416,795)

HbA1c Summary-level for 
HbA1c [29],
N = 46,368 cases

T1D: type 1 diabetes; T2D: type 2 diabetes; HbA1c: glycosylated hemoglobin; 
BMD: bone mineral density; FN: femoral neck; LS: lumbar spine; TB: total body; 
HbA1c: glycosylated hemoglobin.

https://snipa.helmholtz-muenchen.de/snipa3/
https://snipa.helmholtz-muenchen.de/snipa3/
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Fig. 3 Mendelian randomization estimates the effect of T1D/T2D/HbA1c risk on bone mineral density and fracture. T1D: type 1 diabetes; T2D: type 2 
diabetes; HbA1c: glycosylated hemoglobin; FN: femoral neck; LS: lumbar spine; TB: total body; BMD: bone mineral density. Detailed data are provided in 
Additional file 1 (Supplementary Tables S1–S3)
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Subgroup analysis by age
Results of the subgroup analyses of the association 
between T1D and TB-BMD according to age are shown 
in Fig.  4 (a). The weighted median indicated a causal 
association between T1D and TB-BMD (β = -0.027, 95% 
CI: -0.052, -0.002) between 45 and 60 years of age. How-
ever, causal estimates from MR-Egger, weighted median, 
simple mode, and weighted mode did not reveal a signifi-
cant association between them. The estimates from IVW 
method, MR-Egger, simple median, and weighted median 
showed that genetically predicted T1D was not associ-
ated with any of the five outcomes (β ranged from − 0.006 
to 0.181) (Supplementary Table S4 in Additional file 1).

Results of the subgroup analyses of the association 
between T2D and TB-BMD according to age are pre-
sented in Fig.  4 (b). The IVW method showed that 
genetically predicted T2D was positively associated with 
TB-BMD under 15 years (β = 0.058, 95% CI: 0.009, 0.106). 
The causal estimates from IVW, weighted median, and 
weighted mode revealed a causal association between 
T2D and TB-BMD in individuals over 60 years. How-
ever, no causal effect of T2D and TB-BMD was found in 

individuals aged 15–60-years (Supplementary Table S5 in 
Additional file 1).

Discussion
Using a two-sample MR method, we revealed a causal 
association of T1D and T2D risk with TB-BMD. Addi-
tionally, we found that T2D risk was associated with FN-
BMD and heel-BMD. However, no clear evidence of a 
causal relationship between HbA1c and OP/fracture was 
found. The subgroup analyses by age revealed that T2D 
has a stronger causal effect on TB-BMD than does T1D, 
especially in individuals aged > 60 years. Notably, this MR 
study yielded consistent results even after adjusting for 
diabetes-related characteristics.

Our study indicated that genetically increased T1D 
risk was significantly associated with decreased TB-
BMD but not with other outcomes (FN-BMD, LS-BMD, 
and heel-BMD)/fracture. Although T1D commonly 
occurs between the ages of 9 and 14 years [38], a criti-
cal period for optimal bone development in children and 
adolescents [39], subgroup analysis by age revealed that 

Fig. 4 Subgroup analysis using Mendelian randomization estimates for T1D/T2D on total-body bone mineral density by age. TB: total body; BMD: bone 
mineral density. Detailed data are provided in Additional file 1 (Supplementary Tables S4–S5)
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the causal effect of T1D on TB-BMD was only evident in 
individuals aged 45–60 years.

A case-control study involving 32 children with T1D 
found that TB-BMD was significantly reduced in children 
with T1D, but not in the lumbar spine, suggesting a nega-
tive association between T1D and TB-BMD, albeit with 
different ages [40]. Similarly, a 2021 cross-sectional study 
of BMD using dual X-ray densitometry at the femoral 
neck, entire hip, lumbar spine, and whole body reported 
that men with T1D had compromised bone material 
strength and microarchitecture, and individuals with 
T1D showed a modest decline in BMD and low bone 
turnover [41]. Other studies have also found reduced 
BMD in patients with T1D [42]. However, a newly pub-
lished MR study did not find an association between T1D 
and fracture/OP [43]. Although previous studies have 
revealed that the deficiency in bone mass in T1D may be 
apparent at the time of diagnosis [44], whether the dura-
tion of the disease or any other clinical aspects of diabe-
tes or its management are linked to unfavorable skeletal 
morbidity remains unknown. Increasingly, experts rec-
ognize that a thorough evaluation of bone health neces-
sitates examining bone microarchitecture alongside bone 
density. This recognition stems from the fact that the 
greatly increased fracture risk in individuals with T1D is 
disproportionate to the barely detectable decline in BMD 
[45].

While T2D demonstrated no significant associa-
tion with LS-BMD or fracture risk, a notable associa-
tion was observed between genetically predicted T2D 
and FN-BMD, heel-BMD, and TB-BMD. Recently, an 
MR study also found that T2D can reduce the incidence 
of OP, that is, increase BMD (P = 0.0056) [46]. The 2017 
MR study on T2D and BMD revealed a weak positive 
correlation between the two, whereas no link between 
T2D and LS-BMD was reported, and these findings 
were independent to BMI [47]. Secondary analysis of a 
cross-sectional data from youth aged 10–23 years (55% 
African American, 70% female) with T2D (N = 90), obe-
sity (BMI > 95th; N = 128), or normal weight (BMI 85th; 
N = 197) revealed that the obesity and T2D groups had 
significantly higher BMD Z-scores than those of the 
normal weight group [48]. Given that T2D may have an 
asymptomatic phase prior to diagnosis, we observed an 
increase in BMD around the time of T2D diagnosis [49]. 
However, we did not find evidence of increased heel-
BMD in the T2D population, suggesting the need for fur-
ther investigation to confirm this observation. Notably, 
subgroup analysis by age showed that the causal effect 
of T2D on TB-BMD was stronger in individuals over 60 
years than in those under 15 years. This finding is sup-
ported by a prospective observational study [50] in which 
all patients with T2D newly diagnosed through normal 
health care procedures were identified between May 1, 

1996 and June 30, 1998. The mean age at T2D diagnosis 
was 62.9 years for men and higher for women [50]. The 
considerable regional variation in bone microstructure 
across the skeleton and the known distinct effects of T2D 
on the cortical and trabecular bones [42] may be associ-
ated with a suggested mechanism for site-specific effects 
of T2D on BMD [51]. Several hypotheses exist regarding 
the correlation between T2D and BMD and bone qual-
ity. One hypothesis suggests that low bone mass results 
from insulin insufficiency in type-1 diabetes, but increas-
ing insulin levels in individuals with T2D may increase 
BMD because insulin signals the bone’s osteoblasts to 
become more active [52]. However, patients with T2D 
may develop insulin resistance, which may compromise 
the physiological effects of insulin on bones. Addition-
ally, it has been hypothesized that hyperglycemia, which 
characterizes T2D [53], impacts bone integrity, presum-
ably by elevating the quantities of advanced glycation end 
products and collagen cross-linking, which have been 
associated with an increased risk of fractures [54]. . A 
2019 prospective cohort study offers a relatively plausi-
ble explanation for the Diabetes Bone Paradox [55] (high 
risk of fracture but normal or increased BMD) in type 2 
diabetes [56]. In a previous study, frailty status was mea-
sured by the Camos-based algorithm for Frailty Index 
(FI) of deficit accumulation [57]. Guowei Li et al. found 
that the increased fracture risk in patients with T2D may 
be related to the frailty of the patients themselves, and 
T2D exacerbates this process.

In the present MR analysis, HbA1c did not show a 
causal effect on FN-BMD, LS-BMD, heel-BMD, TB-
BMD, and fracture. This observation implies that the 
influence of metabolic management on BMD may not 
be directly proportional over extended durations. This is 
because the detrimental effects of diabetes on BMD may 
have a more substantial impact than what can be solely 
attributed to levels of HbA1C [58]. Although long-term 
glycemic management is not linked to BMD, this does 
not rule out the possibility that patients with T1D may 
experience short-term, reversible alterations in BMD that 
can be treated to reverse them [58].

Notably, this study revealed that T1D had a weak nega-
tive correlation with BMD, whereas T2D had a positive 
correlation with BMD. Recent research, including two 
meta-analyses, has demonstrated a considerably higher 
risk of fracture (six studies, 35,925 individuals with T1D), 
reduced BMD (16 studies, 966 adults with T2D), and 
OP in individuals with T1D [59]. The status of BMD in 
patients with T2D is debatable, and some meta-analyses 
have found that the risk of fractures is high in patients 
with T2D [60]. The risk of hip fracture has been shown 
to increase by 1.3–2.1 times [61], and the risk of other 
fractures reportedly increases by 1.2 times [60], while the 
risk of vertebral fractures does not increase [60]. Further, 
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BMD is enhanced in patients with T2D (lumbar spine 
Z-score + 0.41, total hip Z-score + 0.27), even though 
the fracture risk is high [62]. Considering that nearly all 
patients with T2D are obese, the same processes likely 
contribute to the greater BMD these patients than in 
individuals with obesity but without diabetes. Further, 
BMD is positively associated with BMI [63], and skeletal 
mass adapts to the current mechanical demands, reflect-
ing a physiological process. In addition, diabetes treat-
ment may also modulate BMD [64]. Sulfonylureas and 
metformin reportedly have neutral or marginally protec-
tive relationships with fracture risk [64]. T1D is mediated 
by T lymphocytes [65], leading to autoimmune insuli-
tis and characterized by selective islet beta cell damage. 
In contrast, T2D results from the interaction between 
genetic and environmental factors, giving rise to the 
development of a complex polygenic hereditary disease 
characterized by insulin resistance and defective islet 
beta cell function (insulin hyposecretion) [66].

This study has certain limitations. First, the relationship 
between diabetes and BMD/fracture may be confounded 
by the pleiotropic effect of diabetes-associated SNPs [67]. 
Therefore, our results may represent a shared genetic 
basis between diabetes and BMD/fracture rather than a 
causal relationship. Second, the GWAS summary data 
mostly included individuals of European ancestry, raising 
caution in generalizing our findings to populations with 
different racial and ethnic backgrounds. Third, due to 
insufficient sex-stratified GWAS summary data on BMD, 
we were unable to conduct separate analyses for men and 
women. Lastly, our MR analysis results were solely based 
on bioinformatics analyses, limiting our ability to eluci-
date the underlying mechanisms. Further confirmation of 
our findings would necessitate in vitro and in vivo inves-
tigations in future studies.

Conclusions
Our study revealed that T1D and T2D have different 
effects on BMD at the genetic level. Additionally, BMD 
decreased in patients with T1D and increased in patients 
with T2D. These findings underscore the complex rela-
tionship between diabetes and bone health, highlight-
ing the need for tailored interventions. Future research 
is warranted to elucidate underlying mechanisms and 
validate these associations across diverse populations, 
potentially informing targeted therapies and preventive 
strategies for individuals with diabetes.
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